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In this paper, we obtain generating functions involving hyper geometric functions.  Rodrigues type 

formula of Hermite polynomials which is closely related to generalized Hermite polynomials of 

Dattoli et. al. These results provide useful extensions of the well known results of classical Hermite 

polynomials Hn(x). 
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Introduction:  The Gould-Hopper polynomials )y,x(gm
n [2; p.512 (18)] see also [3; p.58 

(6.2)] are generalization of classical Hermite polynomials Hn(x) [6; p.187(2)].  The notation 

)m(
nH (x, y) for )m(

ng (x, y) was givenby Dattoli et.al. and by Pathan, Yasmeen and Qureshi [4]. 

It is  defined by [3; 6; p.76(6)] 
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where m is a positive integer and  (m; -n) abbreviates the array of m parameters,  
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 These polynomials reduce, when m = 2 and y = 1, to the classical Hermite 

polynomials.  The equation (1.1) can be derived from the following generating relations [2; 

p.512 (19)] 
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and reduces to Hermite polynomials of two variables [2; p.511(11)] 
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which can be derived from the generating relations [2; p.510(8)] 
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 In this paper we shall give some basic relations and properties involving the 

generalized Hermite polynomials Hn(x,y) and then take up generating function and Rodrigues 

type formula for Hn (x, y) and Hn (x) are derived as special cases.   

Generating Functions  

Theorem – 1 

 Any values of parameters and variables leading to result which do not make sense are 

tactily excluded then  
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Proof: Consider the following series  
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 Replacing n by n+2k, and using Legendre’s duplication formula, we get  
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which is required result (2.1). 

Theorem-2 

 Any values of parameters and variables leading to result which do not make sense are 

tactily excluded, then  
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Now using [4; p.452 (2.4)], we get 
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Now again by (2.3) and using (2.1), we get 
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Now equating the equation (2.4) and (2.5), we get required result (2.2).   

Rodrigues type formula 

Theorem-3 
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Proof: Again by generating relations (1.6), we get  
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Equating the coefficient of t
n
, we get required result (2.6). 

Theorem-4 

 Use the fact that  

exp (2xt – yt
2
) = exp [2(xt) – y(xt)
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To prove  
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Proof: By (2.7) we can write  
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Replacing n by n – 2s, in right hand side and equating the coefficient of t
n
, we get required 

result.   

Special Cases 

I. For y = 1, then (2.1) reduced to [6; p.190 (1)], which is published by Brafman [1] and 

for    c = 1 was given by Truesdell [8].  

For y = 1, v = y, then (2.2) reduces to  







0n

2
n

n
02 )txt2(exp

!n

t)x(H
]y;;c,n[F  

 






















22

22

02
c

)yt2xyt21(

ty4
;;

2

1c
,

2

c
F)tx(y21  

This is a well known result [6; p.198] and obtained by Brafman [1] with contour integration as 

the main tool.   

II. For y = 1, (2.6) reduce to [5;p.129(2)]. 

III. For y = 1, then (2.8) reduces to  
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This is a known result [7; p.133(3)] 

Special cases I to III are known formulae of generating functions, Rodrigues type 

formula for classical Hermite polynomial Hn(x).   
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